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INTRODUCTION

After firing the M284/M185 artillery cannon with the regular charge, there is a discharge
of smoke at the breech for approximately one second for all shots; however, with the charge for
high velocity shots, there is no smoke at the breech. The Rensselaer Polytechnic Institute (RPI)
High Pressure Shock Tube and the Steady-State Flow Facilities have been configured to
investigate the performance of the cannon bore evacuator, which is designed to remove the
propellant gases from the bore and prevent the discharge at the breech.

The RPI High Pressure Shock Tube (HPST) is used to simulate the flow conditions in
the gun bore and evacuator for the evacuator charge and discharge cycles. Interior ballistics
solutions for the 155-mm gun (ref 1) provide the flow conditions in the bore. Results from these
solutions are presented in Figure 1. Figure la shows the pressure and temperature history in the
bore until projectile exit. The initial bore-to-evacuator pressure ratio can reach 2200
immediately after the projectile passes the charge ports. The Mach number and flow velocity are
shown in Figures 1b and 1c, respectively.

RPI HIGH PRESSURE SHOCK TUBE

The RPI HPST (ref 2) can be used to produce subsonic and supersonic flows behind the
incident shock wave with high total pressures and total temperatures. When operated as a shock
tunnel (refs 3,4), it is used to test hypersonic flows from Mach 8 to 25, with total enthalpies up
to 6.5 MJ/kg (with a corresponding total temperature of 4100K) in the 24-inch diameter test
section. :

Description of Facility

The RPI HPST, shown in Figure 2, has a 15-foot long driver section with an internal
diameter of 4 inches. This section is pressurized with room temperature air or helium at
pressures up to 2000 psia. The driver is separated from the driven section by the Double
Diaphragm Section (DDS), shown in Figure 3. The DDS holds two scored aluminum or stainless
steel diaphragms. The region between the two diaphragms is initially pressurized to one-half the
driver pressure. The test is initiated by venting the DDS gas to the atmosphere through four
high pressure solenoid valves, causing the diaphragms to rupture.

The driven section of the shock tube is 55 feet long with an internal diameter of 4 inches.
This section can be filled with a number of test gases. The test section is located at the end of
the driven tube and exhausts into a 200 ft* dump tank, as shown in Figure 2. A more detailed
description of the RPI shock tube can be found in Reference 2.

Shock Tube Instrumentation

The instrumentation installed in the shock tube consists primarily of piezoelectric
pressure gauges and thin-film platinum heat gauges (ref 5, cf. Figure 4). Additional
instrumentation, shown in Figure 5, such as an ionization gauge, photoresistor, and Schlieren
system are used when the facility is operated as a shock tunnel (refs 2-4) and are not used for




these tests.

Pressure Gauges

Several pressure gauges are installed in the shock tube wall upstream of the test section.
These pressure gauges are Kistler piezoelectric gauges and are connected to Model 503 charge
amplifiers. The gauge located furthest upstream, as shown in Figure 5, is used to trigger the data
acquisition systems. The two other Kistler gauges measure the pressure after the incident shock
wave and provide a check of the shock wave speed. In addition, a mechanical Heise gauge with
a 75 psia range is used to measure the initial pressure in the driven section of the shock tube

(®y)-

PCB quartz pressure transducers, shown in Figure 4, are used to measure pressures in the
test section. These pressure transducers are dynamically - brated prior to the test series in the
RPI Low Pressure Shock Tube (LPST), shown in Figure Z, over the range of pressure jumps
experienced in the tests. A representative calibration curve is presented in Figure 6.

A Hastings Model 760 digital vacuum gauge is used to measure the initial evacuator
pressure for the charge series. For the discharge series, a mechanical dial pressure gauge is used.
This gauge is calibrated prior to each test series using a dead weight tester.

Heat Transfer Gauges

Two thin-film platinum heat transfer gauges are located upstream of the test section.
These heat transfer gauges, shown in Figure 5, are separated by 1.5 feet and are used to
determine the shock wave velocity. The gauges respond within one or two microseconds and
give a very accurate measure of the shock speed.

Data Acquisition

Several data acquisition systems are used in the RPI HPST Facility. A Tektronix 2520
mainframe with 18 channels is the primary data acquisition system. This machine has six
channels with high speed capability (up to 80 ns per point). A Nicolet digital oscilloscope
provides an additional four channels at up to 100 ns per point. Tektronix TDS 420 and Hewlett-
Packard 54501A digitizing oscilloscopes are available if added capacity is needed.

Flow Conditions in the Shock Tube

Charge Phase

Prior to initiation of the test, the driven section of the shock tube, shown in Figure 2, is
filled with the room temperature test gas, typically air or nitrogen, at a pressure P,. The driver
section is then pressurized to pressure P, with either air or helium. The controlled bursting of
the diaphragms separating the driver and driven tubes causes a shock wave to propagate down
the driven tube, as shown in Figure 7. The Mach number of this shock wave is given by the
following equation (ref 6):
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where y is the ratio of specific heats, M; is the shock Mach number, and a is the speed of sound.
The subscripts 1 and 4 refer to initial conditions in the driven and driver tubes, respectively. The
theoretical driver-to-driven pressure ratio, with experimentally observed values, is plotted in
Figure 8 for air and helium driver gases.

The pressure and temperature jumps across the shock wave are given by (ref 7)
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and these results are presented in Figure 9.

The shock wave imparts a velocity to the driven gas, and this velocity is given by

u =, = (Ms-i] @

And the Mach number of the gas after the shock wave is given by using Egs. (3) and (4) as

2AM>-1
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and is presented in Figure 10. The maximum induced Mach number is 1.89 for air with y = 1.4.

For typical shock Mach numbers used in this study, the test duration is limited by the
arrival of the contact surface which separates the gas that was originally on either side of the
primary diaphragm, cf. Figure 7. For a given shock Mach number, the transit time of the shock
wave is
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where L is the distance from the primary diaphragm. The transit time for the contact surface is
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For a given shock tube length, the duration of the passage of the shock heated gas decreases
with the shock velocity, as shown in Figure 10.

Discharge Phase

For the discharge phase test series, the shock tube is initially pressurized to a pressure P,.
A diaphragm placed at the muzzle exit separates the high pressure gas in the shock tube from
the surrounding dump tank, which is at atmospheric pressure. After the diaphragm ruptures, a
series of expansion waves propagates toward the breech end, cf. Figure 11. This expansion fan
accelerates the gas initially in the driven tube. The expansion is isentropic, and
P P -
e <9>
P4 Ps

The Riemann invariant for a right-running characteristic (in Figure 11) can be used to relate the
velocity and sound speed in region 3

M3 = ﬁ(a‘@ ag) (10)
Combining Eqgs. (9) and (10),
y-1
M, - 2 (24w (an
3 y-1| P,

This relation can be used to calculate the flow Mach number in region 3 from the initial bore
pressure P, and the measured pressure Pj.




The time to establish steady flow in region 3 after initiation of the test by the main
diaphragm break is the time for the tail of the expansion to pass the test section, cf. Figure 11.
The speed of the trailing expansion wave is u, - a, (ref 8). The flow establishment time is then

t . = Ly

“‘ P\t | 12)
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where L,, is the length of the model measured from the diaphragm.

DETERMINATION OF EVACUATOR ORIFICE COEFFICIENTS

The mass flow rate into or out of the evacuator chamber, Figure 12b, during the charge
or discharge phase can be written as the product of an ideal mass flow rate and a charge or
discharge coefficient, i.c.,

m, = K, (13)

L4

The flow coefficient for a specific geometry can be determined by measuring the pressure history
in the evacuator chamber.

Charge Coefficient

Using the equation of state for an ideal gas (ref 7), the mass in the evacuator can be
written as ‘

m = FeVe (14)

¢ RT,

where R is the gas constant and V, is the evacuator volume. Differentiating Eq. (14) with
respect to time gives the mass flow rate into the evacuator chamber as
P, 1 P, aT,

2 (15)
ot RT, Ry> ot

m,2 =V,

The energy equation, neglecting kinetic energy terms in the reservoir and heat loss to the
walls, is (ref 9)

-g-t(aneTe) = 1,CpT, | (16)

where Ty, is the total temperature of the gas in the bore, given by
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Combining Egs. (15) and (16), the mass flow rate into the evacuator chamber is

0 oP) V, (18)
€ ot )YRT,

The mass flow through the orifices can be expressed as (ref 10)
me = KcAc\/PBpB (19)

where A_ is the total area of the orifices and the subscript B denotes conditions in the bore. K,
is the charge coefficient and depends on the orifice geometry, the ratio of specific heats in the
barrel (y;), and the flow Mach number in the bore. Equations (18) and (19) can be combined to
yield the equation for the charge coefficient

oP vV
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Discharge Coefficient

The mass flow rate out of the evacuator during the discharge phase is given by Eq. (15).
Assuming constant specific entropy and a small pressure decrease in the reservoir, the mass flow
rate can be expressed as

me=

Y RT,\ o

which is equivalent to Eq. (18). These assumptions effectively limit this equation to small times
after initiation of the discharge cycle (several hundred milliseconds).

The ideal mass flow rate through the ejectors is given by
. {p a”) (AT (22)
m = —

where the superscript * indicates conditions at M = 1, and A, is the total area of the discharge
ports. For the shock tube discharge phase experiments, the ejector flow is always choked, and
A’/A, = 1. The ratios (o"/p.) and (2’/a,) can be found in Reference 7. Combining Egs. (21) and
(22), and defining C, as (m,/m,;), the discharge coefficient is given by




3 +1
e () i 7] @
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SIMULATION OF 155-MM GUN FLOW DURING THE CHARGE PHASE

A 65 percent scale model of the 155-mm gun bore evacuator, Figure 12a, has been
constructed and installed in the RPI HPST to determine the charge and discharge coefficients
for the baseline 155-mm gun configuration. '

Shock Tube Bore Evacuator Model

The bore of the model consists of a 38-inch long steel pipe with a 4-inch internal
diameter, c.f. Figure 12b. The pipe has a wall thickness of 0.75 inch over the length of the
evacuator, with ten charge holes and three angled discharge holes to scale w1th the 155-mm gun
bore evacuator.

The evacuator casing is constructed of steel tubing with a 9-inch internal diameter and
two 0.75-inch thick steel flanges. The model is held together by six threaded tie rods and was
designed so that the evacuator length-to-diameter ratio (L/D) could be easily altered. The
upstream end of the evacuator has a mahogany spacer machined to match the internal geometry
of the actual 155-mm gun bore evacuator, cf. Figure 12b. A model of the experiment has been
constructed using the CAD program ProEngineer, cf. Figure 12c, so that future model design
changes can be easily evaluated.

Instrumentation

For tests of the charge cycle, the bore evacuator model is instrumented with four pressure
gauges and four heat gauges. Figure 12b shows the location of these gauges.

Pressure Gauges

The bore evacuator model contains four piezoelectric pressure gauges. The gauge
farthest upstream, PG1 in Figure 12b, is a Kistler gauge and measures the pressure after the
incident shock wave. This gauge has been calibrated dynamically in the HPST.

The other pressure gauges are PCB Model 113A20 quartz pressure gauges with
sensitivities of approximately 20 mv/psi. These gauges are connected to a PCB Model 494A06
power supply, and are calibrated in the RPI LPST prior to each test, cf. Figure 2. Pressure
gauge PG?2 is located in the side wall of the evacuator and measures the evacuator chamber
pressure. Gauge PG3 is located in the evacuator casing and is angled in line with a discharge
port. PG4 is mounted in the bore at the center of the model and measures the bore pressure.




Platinum Heat Gauges

Thin-film platinum heat transfer gauges, constructed by painting or sputtering a platinum
film onto a pyrex substrate material, act as resistance thermometers and can be calibrated to
measure heat transfer rates (ref 5). For this experiment, however, they are used only to measure
shock wave speed by comparing the delay in initial response between two gauges separated by a
known distance. A typical output of two gauges installed in the shock tube wall and used for this
purpose (HG1 and HG2 in Figure 12b) is shown in Figure 13.

Two heat transfer gauges, HG3 and HG4, were installed in the evacuator model to
demonstrate the presence of strong shock waves in the evacuator at the early stages of the charge
phase, cf. Figure 12b. HG3 was placed in line with a discharge orifice and mounted to allow the
distance between the gauge and the orifice to be varied. HG4 was fixed at the exit of this
orifice. ‘

Shock Tube Flow Conditions For Simulation of the Charge Phase

The 65 percent scale model of the 155-mm gun bore evacuator is installed on the end of
the RPI HPST, cf. Figure 12a, to test the charge phase. Two 0.035-inch stainless steel
diaphragms are scored in a cross 0.018-inch deep and placed in the DDS, Figure 3. The initial
driven pressure is 22.6 psia, and air is used as the driver gas at 1100 psia. These conditions
produce a shock wave Mach number of 1.89. The Mach number of the flow after the shock is

0.89, and the bore pressure is 91 psia, Figure 9.

Figure 7 depicts how the shock tube flow is used to simulate the actual gun flow. After
the main diaphragm burst, a shock wave propagates down the driven tube. The pressure
distribution along the entire shock tube at an early time is shown at the bottom of Figure 7. The
test begins when the shock wave passes the bore evacuator model. The time history of the model
pressure is shown at the right of Figure 7. A typical bore pressure trace, recorded from PG4, is
shown in Figure 14 for comparison. The flow is steady for at least 10 ms for all tests.

To enable testing of high ratios of the bore pressure to the evacuator pressure, (Pe/P.),
simulating the early charge cycle, diaphragms must be p -2d over the charge and discharge
orifices. Thin plastic diaphragm material is placed on a . 3-inch steel tube, Figure 15, which is
then inserted into the model from the muzzle end. The bore evacuator reservoir is evacuated to
a low pressure P, typically on the order of several Torr. The pressure in the bore is the initial

shock tube driven pressure, P;.

Shock Tube Charge Phase Results and Discussion

Figure 14 is a typical bore pressure trace, recorded from PG4 (Figure 12b) during the
charge phase tests. The bore pressure is 91 psia and is steady for at least 10 ms.

Two thin-film platinum heat gauges are located in the evacuator chamber to measure the
starting shock wave through the discharge ports. Figure 16 is a trace recorded from these gauges
at an initial bore-to-evacuator pressure ratio (Py/P,) of 2300. The presence of strong shock waves
is clearly evident.




The charge coefficient is calculated with Eq. (20), using the measured pressure change in
the evacuator chamber. A sample trace, recorded from PG2, Figure 12b, is presented in
Figure 17. The slope of the pressure history is linear, and the evacuator pressure only changes
several psi over the 10 ms test time.

The charge coefficient for the angled discharge ports, Figure 12b, at bore-to-evacuator
pressure ratios up to 2300 is presented in Figure 18. The charge ports are sealed for these tests,
and all mass flow into the evacuator chamber is through the discharge ports. The charge
coefficient ranges from 0.51 at low P,/P, to 0.58 at a Py/P, of 1570. Figure 18 also contains data
obtained without the diaphragm sleeve, cf. Figure 15. The sleeve has little effect on the charge
coefficient.

The charge coefficient for the charge ports is presented in Figure 19. The discharge
ports are sealed for these tests. The charge coefficient is nearly constant at 0.29. Figure 19 also
contains data obtained after removing the mahogany spacer, Figure 12b. The spacer simulates
the geometry of the casing used to hold the valve ring in the actual 155-mm bore evacuator. The
charge coefficient without the spacer is near 0.40, higher than the baseline by 25 percent.

SHOCK TUBE CONDITIONS FOR THE SIMULATION OF THE DISCHARGE
PHASE

Testing of the bore evacuator discharge phase in the RPI HPST is done using the same
model as that used in the charge phase. Slight modifications made to the model are illustrated
in Figure 20. A 19-inch long extension is placed on the muzzle to simulate the correct position
for the evacuator on the bore. In addition, the charge ports are sealed.

Instrumentation

The initial evacuator pressure is measured by the pressure gauge labeled P, in Figure 20.
This is 2 mechanical gauge and is calibrated with a dead weight tester prior to the test series.
PG2 and PG3 measure the pressure history in the evacuator after initiation of the test and are
the same PCB transducers used in the charge phase. PG4-is also a PCB and measures the time
history of the bore pressure.

The center line static and pitot pressures are measured six inches upstream of the muzzle,
cf. Figure 20. These pressures are measured by PCB pressure transducers. The center line
Mach number of the flow in the bore can be determined from the ratio of these pressures. In
addition, the pitot probe is used to trigger the data acquisition systems.




Shock Tube Flow Conditions For S}‘imuﬂa&ﬁ@m Of Discharge Phase

For the simulation of the flow in the 155-mm gun bore evacuator during the discharge
phase, a scored aluminum diaphragm is placed at the end of the muzzle. The shock tube and
bore evacuator model are initially pressurized to a pressure P, determined by the thickness of the
diaphragm and the depth of the score.

When the diaphragm breaks, expansion waves travel back down the shock tube toward
the driver, cf. Figure 11. Behind these expansion waves the flow is steady. The test time, limited
by the time constant of the pressure transducers, is approximately 100 ms. The time history of
the bore pressure at the center of the model is shown in Figure 21. After the tail of the muzzle
expansion fan passes, the flow through the model is steady for an extended time. '

Shock Tube Discharge Phase Results and Discussion

A typical pressure history recorded from PG4, Figure 20, is shown in Figure 21. This
compares well with the curve obtained from analysis of the wave diagram, cf. Figure 11. The
bore pressure is constant for well over 100 msec.

The center line Mach number obtained from the pitot and static pressures measured six
inches upstream of the muzzle is presented in Figure 22. The results from Eq. (11) are
presented for comparison. There is a slight increase in flow Mach number from the theoretical

value due to the presence of flow from the ejector ports.

A sample time history of the bore evacuator chamber pressure recorded from PG2 is
presented in Figure 23. The evacuator pressure decreases linearly with time and changes only
several psi over the first 30 msec after bore flow establishment. The discharge coefficient
obtained from using these pressure traces in Eq. (23) is plotted in Figure 24. The discharge
coefficient is approximately 0.72 over all test pressures, indicating choked flow through the
ejector orifices.

QUASI-STEADY DISCHARGE PHASE

An approximately 33 percent scale model is installed in the RPI Steady-State Flow
Facility (ref 11) to test quasi-steady performance of the 155-mm gun bore evacuator’s discharge
phase, cf. Figure 25a. The performance of the 155-mm cannon bore evacuator is tested at
evacuator pressures of 1 to 84 psig. For these tests, the evacuator pressure is kept constant and
the pressure and velocity distributions are measured.

33 Percent Scale Bore Eva,malt@r Model

The approximately 33 percent scale model of the 155-mm gun bore evacuator, shown in
Figure 25a, has a barrel made of 2-inch copper tubing. Ten charge holes and three discharge
holes are drilled to scale with the actual gun. The charge holes are sealed for all tests.
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The quasi-steady model is 78.4 inches long. The discharge holes are 16.4 inches from the
muzzle, reproducing the actual length-to-diameter ratios of 31 at the breech side and 8.2 at the
muzzle. A bell-mouth inlet is attached to the breech end.

The evacuator chamber has two 2.5-inch wide plexiglass spacers which, if removed, would
allow testing at different evacuator length-to-diameter ratios. High pressure air is supplied to the
evacuator chamber through two openings in the evacuator casing, cf. Figure 25b.

The performance of the baseline bore evacuator configuration is compared to a second
configuration with staggered discharge orifices. The second model is identical to the baseline,
except the three ejectors are replaced by six staggered ejectors of diameter 0.046 inch, cf. Figure
26. These six ejectors have 90.2 percent of the total hole area as the baseline, and the three
downstream ejectors are at the same axial location. The second row of three ejectors is placed
1 inch upstream of the first row and offset 60 degrees radially.

Instrumentation

The pressure distribution along the barrel is measured using a Sertra Model 339-1 digital
manometer. Muzzle velocity surveys, which use a pitot-static tube, also use this manometer. The
calibration of the digital manometer is checked against U-tube and inclined manometers prior to
the test series.

The velocity distribution at the breech end is measured using a TSI Model 1210-20 thin-
film sensor. The sensor is connected to a TSI Model 1050 anemometer, and measurements are
made with an HP 54501A digital oscilloscope. The sensor is calibrated at velocities up to 68
ft/sec in the RPI Low Speed Calibration Tunnel. For velocities larger than 68 ft/sec, the
calibration is conducted in the model itself. These calibrations use the velocity calculated from a

center line static pressure measurement. A typical calibration curve is presented in Figure 27.

The mass flow into the evacuator chamber is calculated from the measured pressure drop
across a 1-inch diameter sharp-edged orifice. The mass flow is obtained through the relation
(ref 12): '

ri(slugsfsec) = M KY.[p, (24)

The factor h,, is the measured pressure drop across the orifice in inches of water and can be very
small at low evacuator pressures.

A simple inclined manometer is used to measure this pressure drop. The manometer,
shown in Figure 25a, has a large reservoir (155 times the tube inner diameter); the tube is
inclined 18.5 degrees from the horizontal. Indicating fluid with a spemﬁc gravity of 0.824 over a
wide range of temperatures is used for the tests.
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The evacuator pressure and the pressure upstream of the orifice are measured using
mercury U-tube manometers for evacuator pressures up to 16 psig. Higher pressures are
measured using bordon tube pressure gauges. These gauges are calibrated using a dead weight

tester.

Orifice Meter Calibration

Because the orifice mass flow is very small, it is important to ensure no possibility of air
Jeaking out of the model to the atmosphere. Before every test series, the muzzle is plugged, and
the model configuration is altered to accurately calibrate the mass flow through the orifice with
the mass flow through the breech. The modification entails installing 1/8-inch honeycomb
upstream of the breech to smooth the velocity profile. The breech velocity profile is measured
with 2 hot film anemometer from 3 to 86 psig. The sensor is calibrated for very low velocities
(less than 10 fi/sec) using the calibration tunnel and fitted to a curve obtained from a correlation

by Colis and Williams (ref 13).

For the mass flow calibration, the breech velocity profile is integrated numerically to
obtain the mass flow rate, and this is compared to the mass flow rate obtained from the orifice
meter. The mass flows from the two different methods agree to within five percent for a range

of 3 to 86 psig evacuator pressure, Figure 28.

Calculation of Evacuator Performamnce

The mass flow rate into the breech can be expressed as

iy = [pudd (25)

This equation is integrated numerically by Simpson’s 3/8 rule using the measured velocity profile
at the breech. The mass flow augmentation ratio, defined as the ratio of induced flow rate
through the breech to the measured flow rate through the ejectors, is then

L L (26)
m, o my

The discharge coefficient is defined as the ratio of actual mass flow rate through the
ejectors to the ideal mass flow rate. With the ideal mass flow rate given by Eq. (22), the

discharge coefficient is
Ca= o\ (a) (4- @7
o pe(Z 14.)°
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- Test Conditions

The quasi-steady discharge tests are conducted by maintaining the evacuator pressure
vessel at a constant pressure. Air from a laboratory compressor is supplied through two pressure
feeds in the evacuator casing, cf. Figure 25b. The constant mass flow rate of air into the model
is determined from Eq. (27). This mass flow rate must necessarily be the mass flow rate out of
the evacuator chamber through the ejectors.

The tests are conducted at evacuator pressures from 1 to 84 psig. At each test pressure,
the barrel pressure distribution, breech and muzzle velocity profiles, and ejector mass flow rate
are measured. After each test, the data is entered into a FORTRAN computer program that
automatically calculates the performance characteristics such as the orifice coefficient,
augmentation ratio, and breech and muzzle mass flow rates.

Quasi-Steady Discharge Phase Results and Discussion

A comparison of the discharge coefficients for the baseline and staggered configurations
is presented in Figure 29. For evacuator pressures greater than 26 psig, the discharge coefficient
is constant at approximately 0.79 for the baseline configuration and 0.80 for the staggered
ejectors. The discharge coefficient begins to decrease at pressures lower than 26 psig. At
pressures lower than 16 psig, the discharge coefficient drops rapidly toward zero. At pressures
higher than approximately 16 psig, the flow through the ejectors is sonic, i.c. the flow is choked.

The barrel pressure distributions for the baseline configuration are shown in Figures 30a
and 30b and for the staggered configuration in Figures 30c and 30d. For both cases there is a
gradual pressure drop associated with viscous losses upstream of the ejector orifices (which are at
X = 0 inch). The pumping action of the ejectors can be seen in the pressure rise downstream,
and the pressure decreases to ambient at the muzzle exit.

The velocity profiles at the breech, measured with a hot film anemometer, are shown in
Figures 31a and 31b for the baseline configuration and Figures 31c and 31d for the staggered
configuration. These profiles are very nearly uniform at all evacuator pressures. Figure 32 is a
comparison between the mean breech velocities for the baseline and staggered configurations.
The staggered ejector orifices, shown in Figure 26, result in a gain of approximately twelve
percent in breech velocity for all evacuator pressures.

The muzzle velocity profiles, measured with a pitot-static probe, for both configurations
are presented in Figures 33a through 33d. The muzzle velocity profiles are much more non-
uniform than the breech profiles because of the presence of the ejector orifices just upstream of
the muzzle. The tests were preformed with the model oriented so that the downstream ejector
was rotated 30 degrees from the vertical. The asymmetry of the ejectors is a primary cause of
this asymmetry in the muzzle velocity profile.

A comparison between the mean velocities of the core muzzle flow of the staggered and

baseline configurations is shown in Figure 34. The staggered ejector orifices result in a gain of
approximately five percent over all evacuator pressures.
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A pitot-static probe was used to measure the center line velocities at the breech and
muzzle for the 155-mm cannon with room temperature air supplied to the evacnator at Benét
Laboratories (ref 14), and the variation of the breech and muzzle velocities as functions of the
evacuator pressure are presented in Figure 35. Also, the center line velocities for the 33 percent
scale bore evacuator model are presented. Due to the Jower Reynolds number for the scale
model, the mean velocities are slightly lower than for the full-scale gun. Thus, the 33 percent
scale model can be used to investigate various evacuator concepts before applying the promising
configurations to the 155-mm gun.

The mass flow augmentation ratios for the baseline and staggered configurations are
presented in Figure 36. The staggered ejectors result in a gain of approximately 20 percent over
all evacuator pressures. The augmentation reaches a peak of 13 for the baseline and 16 for the
staggered at an evacuator pressure of 12 psig. At pressures below this, the rapid decrease in
orifice coefficient causes a decrease in augmentation. At the higher pressures, the augmentation
ratio drops off slowly as evacuator pressure increases because the supersonic region with shock
bottles increases. This decreases the mixing of the supersonic jets with the ambient air, as

discussed in Reference 15.

During the course of one of the experiments to calibrate the orifice meter, the model was
placed in a configuration with a short breech end and a muzzle L/D ratio of 34. While in this
configuration, a preliminary test was done to determine whether a screen placed at the breech
end would affect the mixing in the bore. A 1-inch thick, 1/8-inch honeycomb screen was placed
at the breech end, and a muzzle velocity profile was obtained for several evacuator pressures. A
preliminary comparison of the muzzle velocity profiles in the L/D = 34 configuration with and
without the screen is presented in Figure 37. The presence of the screen at the breech produces
turbulence which increases the mixing at the jets, resulting in a much more uniform muzzle

velocity profile.

CONCLUSIONS

The RPI HPST and a 65 percent scale model of the 155-mm gun bore evacuator are used
to simulate the flow conditions in the gun bore and evacuator for the evacuator charge and
discharge cycles. Interior ballistics solutions for the 155-mm gun (ref 1) provide the flow
conditions in the bore. The model is tested at a shock tube shock wave Mach number of 1.89.
The Mach number of the flow after the shock is 0.89, and the bore pressure is 91 psia. To
enable testing of high ratios of the bore pressure to the evacuator pressure, (Py/P.), simulating
the early charge cycle, diaphragms must be placed over the charge and discharge orifices.

Two thin-film platinum heat gauges are located in the evacuator chamber to measure the
starting shock wave through the discharge ports. The time histories of these two heat gauges
reveal strong shock waves propagating from the discharge orifices during the early charge cycle.

The charge coefficient for the angled discharge ports has been evaluated at bore-to-
evacuator pressure ratios up to 2300. The charge ports are sealed for these tests, and all mass
flow into the evacuator chamber is through the discharge ports. The charge coefficient ranges
from 0.51 at low Py/P, to 0.58 at a Py/P, of 1570. The sleeve has little effect on the charge
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from 0.51 at low P,/P, to 0.58 at a Py/P, of 1570. The sleeve has little effect on the charge
coefficient.

The charge coefficient for the charge ports, with the discharge ports sealed, is nearly
constant at 0.29. After removing a spacer, which simulates the geometry of the casing used to
hold the valve ring in the actual 155-mm bore evacuator, the charge coefficient rises to near
0.40--higher than the baseline by 25 percent.

Testing the bore evacuator discharge phase in the RPI HPST is done using the same
model as used for the charge phase. The discharge coefficient is approximately 0.72 over all test
pressures, indicating choked flow through the ejector orifices.

To test the quasi-steady performance of the discharge phase of the 155-mm gun bore
evacuator, an approximately 33 percent scale model is installed in the RPI Steady-State Flow
Facility (ref 11). The performance of the 155-mm cannon bore evacuator is tested at evacuator
pressures of 1 to 84 psig. For these tests, the evacuator pressure is kept constant and the
pressure and velocity distributions are measured. The performance of the baseline bore
evacuator configuration is compared to a second configuration with staggered discharge orifices.

For evacuator pressures greater than 26 psig, the discharge coefficient is constant at
approximately 0.79 for the baseline configuration and 0.80 for the staggered ejectors. The
discharge coefficient drops off rapidly at lower pressures. At pressures higher than
approximately 16 psig, the flow through the ejectors is sonic, i.e. the flow is choked.

The staggered ejector orifices, Figure 26, result in a gain of approximately ten percent in
breech velocity for all evacuator pressures. The staggered ejectors result in a gain in mass flow
augmentation ratio of approximately 20 percent over all evacuator pressures. The augmentation
reaches a peak of 13 for the baseline and 16 for the staggered at an evacuator pressure of 12
psig. At pressures below this, the rapid decrease in orifice coefficient causes a decrease in

augmentation.

A preliminary study of the effects of the presence of a screen at the breech produces
turbulence which increases the mixing at the jets, resulting in 2 much more uniform muzzle

velocity profile.
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Figure 2. RPI low and high pressure shock tubes.
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Figure 3. Double diaphragm section of RPI high pressure shock tube.
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Figure 4. Thin-film platinum heat gauge and PCB pressure gauge
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Figure 12a. Photograph of the 65 percent scale bore evacuator model
installed on the RPI high pressure shock tube.
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Figure 15. Photograph of 1/8-inch steel sleeve used to hold
diaphragms over charge and discharge holes.
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Figure 25a. Photograph of the RPI Steady-State Flow Facility showing
bore evacuator model and inclined manometer.
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